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Chapter 24: Ordinary Differential Equations

Definitions

1 y(t+1)−y(t)
y(t) = r

2 y(t + 1) = (1 + r)y(t)

3 y(t+∆t)−y(t)
y(t) = r∆t

4 y(t+∆)−y(t)
∆t = ry(t)

5 dy
dt (t) = ry(t)
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Chapter 24: Ordinary Differential Equations

Example 24.1

Example 24.1 A simple example of a differential
equation is the equation

ẏ(t) = 2y(t), or simply ẏ = 2y . (4)

We are asked in (4) to find a function y(t) with
the property that taking its derivative is the
same as multiplying the function by 2.
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Chapter 24: Ordinary Differential Equations

Example 24.1

One solution to (4) is y(t) = e2t since its
derivative ẏ(t) is 2e2t = 2y(t). Notice, in this
case, that for any constant k , y(t) = ke2t is also
a solution of (4). A typical differential equation
has a whole one-parameter family of solutions.
As was the situation with difference equations,
the constant k is determined by the initial value
y(t0) of the variable y(t) under study.
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Chapter 24: Ordinary Differential Equations

Definitions

Differential equations which describe a
relationship between a function of several
variables and its partial derivatives are called
partial differential equations.
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Chapter 24: Ordinary Differential Equations

Definitions

An ordinary differential equation is an equation
ẏ = F (y , t) between the derivative of an
unknown function y(t) and an expression F (y , t)
involving y and t . If the equation can be written
as ẏ = F (y), we call it an autonomous or
time-independent differential equation. If the
equation specifically involves t , we call them
nonautonomours or time-dependent.
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Chapter 24: Ordinary Differential Equations

Example 24.2

Example 24.2 Let’s look at another
example:ẏ(t) = y2. Here, we asked to find the
function whose derivative at each t is the same
as the square of the function. One solution is
y(t) = −1/t . To see that this is a solution, take
the derivative ẏ , then compute (y(t))2 and see
that you get the same result. (Check this) Once
more, there is a one-parameter family of
solutions: y(t) = 1/(k − t). Again, check this by
computing ẏ and y2 and comparing the two.
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Chapter 24: Ordinary Differential Equations

Example 24.3

Example 24.3 The equation ÿ = 3ẏ − 2y + 2 is
a second order equation. Its solution is
y(t) = k1e2t + k2et + 1. (Check) The equation
d4y/dt4 = y is a fourth order differential
equation, whose solution is

y(t) = k1 cos t + k2 sin t + k3et + k4e−t ,

with four constants of integration.
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Explicit Solutions

ẏ = y(100− 2y) has a solution y(t) = 50. We
call the constant solutions as steady state,
stationary solution, stationary point and
equilibrium.
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Chapter 24: Ordinary Differential Equations

Explicit Solutions

1 ẏ = ay =⇒ y(t) = keat

2 ẏ = ay + b =⇒ y(t) = −b
a + keat

3 ẏ = a(t)y =⇒ y(t) = ke
∫ t a(s)ds

4 ẏ = a(t)y + b(t) =⇒
y(t) =

[
k +

∫ t b(s)e−
∫ s a(u)duds

]
e
∫ t a(s)ds
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Explicit Solutions

The above four are called linear differential
equations. The first and the third are called
homogenous (without b term); the second and
fourth with b term are called nonhomogeneous.
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Chapter 24: Ordinary Differential Equations

Example 24.6

Example 24.6(Derivation of Density Function
from Failure Rates) Let f be density function for
a continuous random variable t ≥ 0 and let F be
the corresponding distribution function. Think of
the random variable t as denoting the lifetime of
a mechanical or electrical component. Then,

R(t) ≡ 1− F (t) = Pr{T > t},

the probability that the component lasts at least
t time units, is called the reliability function.
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Chapter 24: Ordinary Differential Equations

Example 24.6
Given f ,F , and R, the failure rate or hazard
function Z is defined as

Z (t) ≡ f (t)

1− F (t)
=

f (t)

R(t)
. (13)

The function Z can be thought of as the
probability that the component will fail tn the
next ∆t time units, given that it has not failed up
to time t , because the latter conditional
probability is equal to

Pr(t < T ≤ t + ∆t |T > t) =
Pr(t < T ≤ t + ∆t)

Pr(T > t)

≈ f (t)∆t
R(t)

= Z (t)∆t
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Example 24.6

The interesting fact is that one can go the other
way: given a hazard function Z , there is a
unique corresponding probability density f and
distribution F that satisfy (13).
To construct f from Z , note that since
R(t) = 1− F (t),R′ = −F ′ = −f . Therefore, (13)
can be written as

Z (t) = −R′(t)

R(t)
, (14)

with initial condition R(0) = 1− F (0) = 1.
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Chapter 24: Ordinary Differential Equations

Example 24.6
Given Z , equation (14) is a linear homogeneous
differential equation in R whose solution is

R(t) = e−
∫ t

0 Z (s)ds.

Since f = F ′ = (1− R)′ = −R′,

f (t) = Z (t)e−
∫ t

0 Z (s)ds. (15)

The impact of going from Z to f is that there is
much less structure imposed on Z . One
chooses a reasonable failure rate function Z
and then (15) determines the corresponding
probability density with all the right properties.
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Chapter 24: Ordinary Differential Equations

Example 24.6
For example, setting Z (t) equal to a constant α
implies that the probability of failure is
independent of how long the component has
been working. The corresponding density
function by (15) is

f (t) = αe−αt ,

the density function for the exponential
distribution. If we add some flexibility and set
Z (t) to be a general monomial in t :

Z (t) = αβtβ−1,
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Example 24.6

then (15) yields the density function

f (t ;α, β) = (αβ)tβ−1e−αtβ . (16)

The random variable with density function (16)
is said to have the Weibull distribution.
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Example 24.6

separable equations: ẏ = F (y , t) if F (y , t)
can be written as a product
F (y , t) = g(y)h(t) for some function g and
h.
dy
dt = g(y)h(t) =⇒ dy

g(y) = h(t)dt =⇒∫ y dy
g(y) =

∫ t h(t)dt + C
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Chapter 24: Ordinary Differential Equations

Example 24.8

Example 24.8 Let x → u(x) be a utility function
for wealth x . The Arrow-Pratt measure of
relative risk aversion at wealth x is the
expression

v(x) = −u′′(x)x
u′(x)

,

the elasticity of u′ with respect to x .
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Example 24.8
In statistical analysis, one would like to work
with a utility function u of constant relative risk
aversion. Such a u would satisfy the second
order differential equation

u′′(x) = −u′(x)b
x

. (18)

Let v(x) = u′(x). Then, equation (18) becomes
the first order differential equation

dv
dx

= −vb
x
,

a separable differential equation in v and x .
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Chapter 24: Ordinary Differential Equations

Example 24.8

Separating the v ′s from the x ′s yields

dv
v

= −b
dx
x
, or

∫
dv
v

= −b
∫

dx
x
,

whose solution is

ln v = −b(ln x+C), or v = e−b ln x ·e−bC = k1eln x−b
= k1x−b.
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Chapter 24: Ordinary Differential Equations

Example 24.8

Since v = u′

u =

∫
v =

∫
k1x−b =

{
k2 + k1 ln x if b = 1,

k2 + k1
1−bx1−b if b 6= 1,

a three-parameter family of functions of
constant relative risk aversion. The condition
u′ > 0 requires k1 > 0.
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Linear Second Order Equations

aÿ + bẏ + cy = 0 =⇒ ar2 + br + c = 0 =⇒
Characteristic equation r = −b±

√
b2−4ac

2a
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Chapter 24: Ordinary Differential Equations

Linear Second Order Equations

Theorem 24.1 If the characteristic polynomial of
the linear second order differential equation has
distinct real root r1, r2, then the general solution
is y(t) = k1er1t + k2er2t
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Chapter 24: Ordinary Differential Equations

Example 24.12

Example 24.12 Let’s solve the initial value
problem

ÿ − ẏ − 2y = 0, y(0)=3, ẏ(0) = 0

The characteristic equation for this problem is
r2 − r − 2 = 0. Its roots are r = 2,−1. The
general solution of the differential equation is

y(t) = k1e2t + k2e−1.
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Chapter 24: Ordinary Differential Equations

Example 24.12

Plug in the two initial values

y(0) = k1 + k2 = 3,
ẏ(0) = 2k1 − k2 = 0,

and solve this system for k1 = 1 and k2 = 2.
Therefore, the solution of our initial value
problem (28) is y(t) = e2t + e−1
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Chapter 24: Ordinary Differential Equations

Example 24.13

Example 24.13 Let x → u(x) be a utility
function over wealth x . At any wealth level x , the
Arrow-Pratt measure of absolute risk aversion
µ(x) equals −u′′(x)/u′(x). The function µ is the
percent rate of change of u′ at x ; it is a measure
of the concavity of the utility function u.
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Example 24.13

To find the utility functions that have constant
absolute risk aversion a, we solve the second
order differential equation

−u′′(x)x
u′(x)

= a, or u′′(x) + au′(x) = 0. (29)
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Chapter 24: Ordinary Differential Equations

Example 24.13

Equation (29) is a linear second order
differential equation whose characteristic
polynomial is r2 + ar = 0, with roots r = 0,−a.
The general solution of (29) is

u(x) = c1e0x + c2e−ax = c1 + c2e−ax ,

the family affine transformation of e−ax . Note
that the condition u′ > 0 implies that c2 < 0.
Check that these u′s have absolute risk
aversion.
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Linear Second Order Equations

Theorem 24.2 If the characteristic polynomial of
the linear second order differential equation has
equal roots r1 = r2, then the general solution is
y(t) = k1er1t + k2ter2t
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Chapter 24: Ordinary Differential Equations

Linear Second Order Equations

Theorem 24.3 If the characteristic polynomial of
the linear second order differential equation has
complex roots α± iβ, then the general solution
is y(t) = eαt(C1 cos βt + C2 sin βt)
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Chapter 24: Ordinary Differential Equations

Linear Second Order Equations

aÿ + bẏ + cy = g(t) =⇒ Theorem 24.4 Let yp(t)
be any particular solution of the
nonhomogeneous differential equation (38). Let
k1y1(t) + k2y2(t) be a general solution of the
corresponding homogeneous equation
aÿ + bẏ + cy = 0. Then, a general solution of
(38) is y(t) = k1y1(t) + k2y2(t) + yp(t).
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Chapter 24: Ordinary Differential Equations

Example 24.15

Example 24.15 Let’s find the general solution of
the equation

ÿ − 2ẏ − 3y = 9t2. (40)

The general solution of ÿ − 2ẏ − 3y = 0 is
y(t) = k1e3t + k2e−t . Since the forcing term in
(40) is a quadratic in t , we look for a particular
solution of (40) that is also a quadratic in t :

yp(t) = At2 + Bt + C.
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Example 24.15

Differentiate this candidate solution and plug it
into equation (40) to obtain

9t2 = ÿp − 2ẏp − 3yp

= (2A)− 2(2At + B)− 3(At2 + Bt + C)

= (−3A)t2 + (−4A− 3B)t + (2A− 2B − 3C)
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Chapter 24: Ordinary Differential Equations

Example 24.15

Since the left− and right−hand sides of this
equation are equal for all t , the coefficients of
each power of t must be equal:

9 = −3A
0 = −4A− 3B
0 = 2A− 2B − 3C,

a system whose solution is A = −3,B = 4, and
C = −14/3.
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Example 24.15

Therefore, a particular solution of (40) is

yp(t) = −3t2 + 4t − 14
3
,

and the general solution of (40) is

y(t) = k1e3t + k2e−t − 3t2 + 4t − 14
3
. (Check.)
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Chapter 24: Ordinary Differential Equations

Example 24.16

Example 24.16 The general solution of the
nonhomogeneous equation

ÿ − 2ẏ − 3y = 8e−t . (41)

is y(t) = k1e−t + k2e3t + yp(t), where yp(t) is a
particular solution of (41).
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Chapter 24: Ordinary Differential Equations

Example 24.16

Given the form of g(t) in (41), a natural
candidate for yp(t) is yp = Ae−t . However, this
candidate does not work because the general
solution of the homogeneous equation
constrains an e−t term. So, we look for a
particular solution of the form yp(t) = Ate−t , with
an extra t factor.
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Example 24.16

Differentiate this candidate twice and plug it into
(41):

8e−t = ÿp(t)− 2ẏp(t)− 3yp(t)

= (Ate−t − 2Ae−t)− 2(−Ate−t + Ae−t)− 3(Ate−t)

= −4Ae−t ,

Therefore, A = −2 and yp(t) = −2te−t .
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Chapter 24: Ordinary Differential Equations

Existence of Solutions

Theorem 24.5 consider the initial value problem
ẏ = f (t , y) y(t0) = y0. Suppose that f is a
continuous function at the point (t0, y0). Then,
there exists a C1 function y : I → R1 defined on
an open interval I = (t0 − a, t0 + a) about t0 such
that y(t0) = y0 and ẏ(t) = f (t , y(t)) for all t ∈ I,
that is, y(t) is a solution of the initial value
problem (42). Furthermore, if f is C1 at (t0, y0) ,
then the solution y(t) is unique; any two
solutions of (42) must be equal to each other on
the intersection of their domains.
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Example 24.17
Example 24.17 Consider the initial value
problem

ẏ = 3y2/3, y(0) = 0. (43)

Notice that y2/3 is a continuous function
everywhere, but it is not differentiable at y = 0,
since its derivative at 0 is finite. This problem
falls between the cracks discussed in Theorem
24.5. Theorem 24.5 tells us that this problem
has a solution, but it doesn’t guarantee that
there is only one solution. In fact, y(t) = 0 and
y(t) = t3 are two solutions of initial value
problem (43).
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Example 24.18

Example 24.18 Consider the differential
equation ẏ = 2ty . This is an equation that we
can solve explicitly as y = ket2, but let’s find this
solution geometrically and then compare it with
this known solution. At each point (t , y) in the
plane, draw a little segment of slope 2ty .
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Example 24.18

For example, in Figure 24.2, we have drawn
segments of slope −2 at the points (1,−1) and
(−1,1); segments of slope 2 at the points (1,1)
and (−1,−1); segments of slope 4 at the points
(1,2) and (−1,−2); segments of slope −4 at
the points (−1,2), (1,−2), (−2,1) and (2,−1);
and segments of slope 0 at the points
(0,1), (0,0) and (0,−1).
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Example 24.18

Just by looking at Figure 24.2, we begin to get
the picture of functions y(t) with a bowl-shaped
graph in the upper half plane and an inverted
bowl-shaped graph in the lower half plane.
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Example 24.18

However, we need many more segments to get
a complete picture. To do this effectively, we
need a more efficient process than that of
choosing random (t , y)′s and evaluating
ẏ = f (t , y) at these points. In the previous
paragraph, we did choose our points in pairs or
triplets with ẏ the same at each point of the
graph. It is natural to extend this procedure to
more than two points at a time and to consider
at once all the points where ẏ takes on a single
value.
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Example 24.18

For example, what are all the points (t , y) where
the slope ẏ is 2? Since ẏ = 2ty , ẏ = 2 at all
points (t , y) for which 2ty = 2 or y = 1/t . In
Figure 24.3, we have sketched lightly the
hyperbola y = 1/t and we have drawn little
segments of slope 2 along this hyperbola. In
this way, we can draw the slope of y(t) for whole
curves of points at a time.
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Example 24.18

Now, let’s do the same for ẏ = 0, the slope will
be zero whenever 2ty = 0; that is, whenever
t = 0 or y = 0−on both axes. We’ve drawn little
horizontal segments along both axes in Figure
24.4 to mirror the fact that ẏ = 0 when t = 0 or
y = 0. We have continued this process for
slopes ẏ = +2,−1,−2 in Figure 24.4.
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Example 24.18

We now have enough information that we can
sketch in some curves which have the
appropriate slopes. This is done in Figure 24.5.
These curves are indeed the graphs of the
family of functions y = ket2, which we know to
be the general solution of ẏ = 2ty .
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Example 24.19

Example 24.19 We will use the method of the
previous example to sketch the direction field of
ẏ = y2 + t2 efficiently. The level sets of y2 + t2

are circles y2 + t2 = a of radius
√

a. In Figure
24.6, we have drawn a direction field with slope
1/4 on the circle y2 + t2 = 1/4 of radius 1/2, a
field with slope 1 on the circle y2 + t2 = 1, a field
with slope 2 on the circle y2 + t2 = 2, and a field
with slope 4 on the circle y2 + t2 = 4.
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Example 24.19

In Figure 24.7, we have superimposed on the
integral field of Figure 24.6, a family of curves
which are everywhere tangent to the field.
These are the graphs of the solutions of
ẏ = y2 + t2.
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Example 24.21

Example 24.21 Let’s use this method to draw
the phase portrait of

ẏ = y − y3, (44)

We’ve drawn the graph of y − y3 in Figure
24.12. Since y − y3 = y(1− y)(1 + y), the
stationary points of (44) occur at y = 0,1,−1.
To find the sign of y − y3 in each of the intervals
(−∞,−1), (−1,0), (0,1), and (1,∞), we just
evaluated this function at a point in each of
these intervals.
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Example 24.21

In the intervals (−1,0) and (1,∞), the graph of
y − y3 lies below the y−axis. This means that
ẏ = y − y3 is negative there and so y(t) is
decreasing−a fact that we’ve marked in each of
these intervals with an arrow pointing to the left.
Similarly, in the intervals (−∞,−1) and (0,1),
the graph of y − y3 lies below the y−axis. This
means that ẏ = y − y3 is positive and y(t) is
increasing−a fact that we’ve marked in these
intervals in Figure 24.12 with arrows pointing to
the right.
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Example 24.21

We can easily read the evolution of differential
equation (44) from the phase portrait in Figure
24.12. If one starts to the left of 0, the system
tends to the steady state y = −1. If one starts
anywhere to the right of y = 0, the system tends
to the steady state y = 1. The unstable
equilibrium at y = 0 is the boundary (or
separatrix) between the region of attraction of
y = −1 and that of y = +1.
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Example 24.22

Example 24.22 Let’s add a small complication
to the differential equation (44) and consider the
equation

ẏ = ey(y − y3), (45)

This equation will surely not have an illuminating
closed form solution, if it has a closed form
solution at all. To draw its phase portrait, we
need to draw the graph of f (y) = ey(y − y3).

Yu Ren Mathematical Economics: Lecture 18



math

Chapter 24: Ordinary Differential Equations

Example 24.22

However, we are really only interested in where
f is positive and where f is negative. Since the
ey factor is always positive, f (y) will have the
same sign as y − y3 for any y . This implies that
equation (45) has the same phase portrait as
equation (44) in the previous example. The only
difference is in the speed of the motion; for
example, y(t) will move to +∞ much more
quickly for (45) than it will for (44). The time
factor is hidden when we draw the phase
portrait.
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Phase portraits and equilibria on R1

Theorem 24.6 Let y0 be a rest point of the C1

differential equation ẏ = f (y) on the line; so
f (y0) = 0. If f ′(y0) < 0, then y0 is an
asymptotically stable equilibrium. If f ′(y0) > 0,
then y0 is an unstable equilibrium.
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