Mathematical Economics: Lecture 4

Yu Ren

WISE, Xiamen University

October 7, 2012

New Section

Chapter 4

Composite Functions

• $f(x) = h(g(x)), f(x) = (h \circ g)(x)$

Composite Functions

• Example 4.1 $g(x) = x^2$, h(x) = x + 4, $(h \circ g)(x) = x^2 + 4$ $(g \circ h)(x) = (x + 4)^2$. Note that $h \circ g \neq g \circ h$

Composite Functions

• Example 4.1 $g(x) = x^2$, h(x) = x + 4, $(h \circ g)(x) = x^2 + 4$ $(g \circ h)(x) = (x + 4)^2$. Note that $h \circ g \neq g \circ h$

Composite Functions

• Example 4.1 $g(x) = x^2$, h(x) = x + 4, $(h \circ g)(x) = x^2 + 4$ $(g \circ h)(x) = (x + 4)^2$. Note that $h \circ g \neq g \circ h$

Example in Economics

Example 4.2

- firm's production function y = f(L)
- L is the amount of labor input
- profit function $P(L) \equiv \Pi(f(L)) = (\Pi \circ f)(L)$
- $\Pi(y) = -y^4 + 6y^2 5$ and $f(L) = 5L^{2/3}$, (1)

Example in Economics

Example 4.2

$$P(L) = \Pi(f(L))$$

= $-(5L^{2/3})^4 + 6(5L^{2/3})^2 - 5$
= $-625L^{8/3} + 150L^{4/3} - 5.$

Differentiating Composite Function

• $\frac{d}{dx}(h(g(x))) = h'(g(x))g'(x)$

Differentiating Composite Function

• **Example 4.4** apply the Chain Rule to Example 4.2,

$$P'(L) = \frac{d}{dL}(\Pi(f(L))) = \Pi'(f(L)) \cdot f'(L)$$

= $(-4(5L^{2/3})^3 + 12(5L^{2/3})) \cdot (\frac{10}{3}L^{-1/3})$
= $-\frac{5000}{3}L^{5/3} + 200L^{1/3}.$

Differentiating Composite Function

directly take the derivative,

$$(-625L^{8/3}+150L^{4/3}-5)'=-rac{5000}{3}L^{5/3}+200L^{1/3}$$

Inverse Functions

f: E₁ → R¹, g: E₂ → R¹
If g(z) is the inverse function of f(x) g(f(x)) = x for all x ∈ E₁ f(g(z)) = z for all z ∈ E₂

Inverse Functions

Example 4.7

$$f(x) = 2x \& g(y) = \frac{1}{2}y,$$

$$f(x) = x^2 \& g(y) = \sqrt{y}, \text{ for } x, y \ge 0$$

$$f(x) = x^3 \& g(y) = y^{1/3},$$

$$f(x) = \frac{x-1}{x+1} \& g(y) = \frac{1+y}{1-y},$$

$$f(x) = \frac{1}{x} \& g(y) = \frac{1}{y}.$$

Inverse Functions: Note

- in order for f to have an inverse g, f cannot assign the same point to two different points in its domain.
- $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$
- $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$
- "one-to-one" or "injective"

Inverse Functions: Note

Example 4.8 $f(x) = x^2$ is not one-to-one, but restrict the domain of *f* to be the nonnegative numbers $[0, \infty)$, then it has a well-defined inverse $g(y) = \sqrt{y}$. See Figure 4.3.

Inverse Functions: Theorem

Theorem 4.2: A function *f* defined on an interval *E* in R^1 has a well-defined inverse on the interval f(E) if f'(x) > 0 for all $x \in E$ or f'(x) < 0 for all $x \in E$

Derivatives of the inverse function

Theorem 4.3: Let *f* be a C^1 function defined on the interval *I* in R^1 . If $f'(x) \neq 0$ for all $x \in I$, then

- f is invertible on I
- its inverse g is a C¹ function on the interval f(I)
- for all *z* in the domain of the inverse function *g*

$$g'(z) = rac{1}{f'(g(z))}$$

Examples

Example 4.11 $f(x) = \frac{x-1}{x+1}$ and x=2, then f(2)=1/3 and g(1/3)=2.

$$f'(x) = rac{2}{(x+1)^2} ext{ and } f'(2) = rac{2}{9},$$

 $g'(rac{1}{3}) = rac{1}{f'(2)} = rac{1}{2/9} = rac{9}{2}.$

Examples

check directly:

$$g(y) = rac{1+y}{1-y},$$

 $g'(y) = rac{2}{(1-y)^2},$
 $g'(rac{1}{3}) = rac{2}{4/9} = rac{9}{2}.$

New Section

Application to Economics

Yu Ren Mathematical Economics: Lecture 4

Production

- y = f(q), q: input; y: output
- continuous or C²
- increasing f'(q) > 0
- for some $a \ge 0$, f''(q) > 0 for $q \in [0, a)$ and f''(q) < 0 for q > a

Production

two-parameter family y = kq^b k > 0 b > 0 f = \sqrt{q}

Cost Function

- y = C(x), x: output; y: cost
 C¹
- increasing C'(x) > 0
- C'(x): marginal cost MC(x)
- average cost: $AC(x) = \frac{C(x)}{x}$

Cost Function

- *MC* > *AC*, then *AC* is increasing
- *MC* < *AC*, then *AC* is decreasing
- at an interior minimum of AC, AC = MC

Revenue and Profit Function

- *R*(*x*); revenue function, indicating how much money a firm receives for selling *x* units of its output
- increasing in x
- profit function: $\prod(x) = R(x) C(x)$
- optimal output: $MR(x^*) = MC(x^*)$

Demand Function and Elasticity

- demand function: x = F(p) expresses x consumed in terms of price level p
- inverse demand function: p = G(x)
- price elasticity of demand: $\varepsilon = \frac{\Delta x}{x} / \frac{\Delta p}{p}$
- $\varepsilon \in (-1, 0)$: inelastic
- $\varepsilon \in (-\infty, -1)$: elastic
- $\varepsilon = -1$: unit elastic

Present Value and Annuities

- put A dollars into an account which compounds interest continuously at rate r, after t years
- $B = Ae^{rt}$
- $A(1+r)^t$, $A(1+r/2)^{2t}$, $A(1+r/4)^{4t}$

Present Value and Annuities

- $\lim_{n\to+\infty} A(1+r/n)^{tn} = Ae^{rt}$
- present value: $A = Be^{-rt}$
- annuity: a sequence of equal payments at regular intervals over a specified period of time