Mathematical Economics: Lecture 6

Yu Ren

WISE, Xiamen University

October 10, 2012

Outline

Chapter 11 Linear Independence

New Section

Chapter 11: Linear Independence

Linear Independence

 Vector V₁, ··· , V_k in Rⁿ are linear dependent if and only if ∃ c₁, ··· , c_k not all zero, s.t. c₁ V₁ + ··· + c_k V_k = 0.

Linear Independence

• Vector V_1, \dots, V_k in \mathbb{R}^n are linear independent if and only if $c_1 V_1 + \dots + c_k V_k = 0$ implies $c_1 = c_2 = \dots = c_k = 0$

Linear Independence; Example

• Example 11.2 The vectors

$$w_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, w_2 = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}, \text{ and } w_3 = \begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix}$$

are linearly dependent in R^3 , since

$$1 \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} - 2 \cdot \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} + 1 \cdot \begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

as can easily be verified.

Linear Independence

• **Theorem 11.1**: Vectors v_1, \dots, v_k in \mathbb{R}^n are linearly dependent if and only if the linear system $A = (v_1, \dots, v_k), Ac = 0$ has nonzero solution (c_1, \dots, c_k) .

Linear Independence

Theorem 11.2: A set of n vectors v₁, · · · , v_n in Rⁿ is linearly independent if and only if det(v₁, · · · , v_n) ≠ 0

Linear Independence

Theorem 11.3 If k > n, any set of k vectors in Rⁿ is linearly dependent.

Spanning Sets

- the line generated or spanned by V: $L[V] \equiv \{rV : r \in R^1\}.$
- Figure 11.1 (page 238)

Spanning Sets

• Set generated or spanned by V_1, \dots, V_k : $L[V_1, \dots, V_k] \equiv \{c_1 V_1 + \dots + c_k V_k :$ $c_1 \dots, c_k \in \mathbb{R}^1\}.$

Spanning Sets: Example

• **Example 11.4** The x_1x_2 -plane in R^3 is the span of the unit vectors $e_1 = (1, 0, 0)$ and $e_2 = (0, 1, 0)$, because any vector (a, b, 0) in this plane can be written as

$$\begin{pmatrix} a \\ b \\ 0 \end{pmatrix} = a \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + b \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

Spanning *R^k*

- any linear independent vector V_1, \dots, V_k can span R^k . This means any vector $U \in R^k, \exists c_1, \dots, c_k, \text{ s.t.}$ $c_1 V_1 + \dots + c_k V_k = U.$
- To judge whether *B* belongs to the space spanned by {*V*₁, ..., *V_k*}, check whether *Vc* = *B* has a solution *c*. (Theorem 11.4)
- A set of vectors that span *Rⁿ* must contain at least n vectors. (Theorem 11.6)

Spanning *R^k*

- any linear independent vector V_1, \dots, V_k can span R^k . This means any vector $U \in R^k, \exists c_1, \dots, c_k, \text{ s.t.}$ $c_1 V_1 + \dots + c_k V_k = U.$
- To judge whether *B* belongs to the space spanned by $\{V_1, \dots, V_k\}$, check whether Vc = B has a solution *c*. (Theorem 11.4)
- A set of vectors that span *Rⁿ* must contain at least n vectors. (Theorem 11.6)

Spanning *R^k*

- any linear independent vector V_1, \dots, V_k can span R^k . This means any vector $U \in R^k, \exists c_1, \dots, c_k, \text{ s.t.}$ $c_1 V_1 + \dots + c_k V_k = U.$
- To judge whether *B* belongs to the space spanned by $\{V_1, \dots, V_k\}$, check whether Vc = B has a solution *c*. (Theorem 11.4)
- A set of vectors that span *Rⁿ* must contain at least n vectors. (Theorem 11.6)

Spanning *R^k*: Example

Example 11.1 The vectors

$$oldsymbol{e}_1 = egin{pmatrix} 1 \ 0 \ dots \ 0 \end{pmatrix}, \dots, oldsymbol{e}_n = egin{pmatrix} 0 \ 0 \ dots \ 1 \end{pmatrix}$$

in Rⁿ are linearly independent

Spanning R^k: Example

because if $c_1, ..., c_n$ are scalars such that $c_1e_1 + c_2e_2 + \cdots + c_ne_n = 0$,

The last vector equation implies that $c_1 = c_2 = c_n = 0.$

Basis and dimension in Rⁿ

Definition: Let V_1, \dots, V_k be a fixed set of k vectors in \mathbb{R}^n . let V be the set $L[V_1, \dots, V_k]$ spanned by V_1, \dots, V_k . Then if V_1, \dots, V_k are linearly independent, V_1, \dots, V_k is called a basis of V. More generally, let W_1, \dots, W_k be a collection of vectors in V. Then W_1, \dots, W_k forms a basis if

- (a) W_1, \cdots, W_k span V and
- (b) W_1, \dots, W_k are linearly independent.

Basis and dimension in Rⁿ: Example

Example 11.7

- $v_1 = (1, 1, 1), v_2 = (1, -1, -1)$, and $v_3 = (2, 0, 0)$
- $V_3 = V_1 + V_2$
- linear combination of v₁, v₂, and v₃ = linear combination of just v₁, and v₂

Basis and dimension in Rⁿ: Example

$$w = av_1 + bv_2 + cv_3$$

= $av_1 + bv_2 + c(v_1 + v_2)$
= $(a+c)v_1 + (b+c)v_2$.

The set $\{v_1, v_2\}$ is a more efficient spanning set than is the set $\{v_1, v_2, v_3\}$.

Basis and dimension in Rⁿ: Example

• Example 11.8 We conclude from Examples 11.1 and 11.5 that the unit vectors

$$oldsymbol{e}_1 = egin{pmatrix} 1 \ 0 \ dots \ 0 \end{pmatrix}, \ldots, oldsymbol{e}_n = egin{pmatrix} 0 \ 0 \ dots \ 1 \end{pmatrix}$$

form a basis of R^n . Since this is such a natural basis, it is called the canonical basis of R^n .

Basis and dimension in R^n

- V_1, \dots, V_k are linearly independent \iff V_1, \dots, V_k span R^k . $\iff V_1, \dots, V_k$ form a basis of $R^k \iff$ the determinant of $[V_1, \dots, V_k]$ is nonzero. (Theorem 11.8)
- we call the number of basis of a space as the dimension.