Mathematical Economics: Lecture 7

Yu Ren

WISE, Xiamen University

October 15, 2012

Outline

Chapter 12: Limits and Open Sets

New Section

Chapter 12: Limits and Open Sets

- A sequence of real numbers: a mapping from all natural numbers to real numbers.
 - There are infinite number of entries in a sequence
 - May not have an explicit function to describe the mapping

- A sequence of real numbers: a mapping from all natural numbers to real numbers.
 - There are infinite number of entries in a sequence
 - May not have an explicit function to describe the mapping

- A sequence of real numbers: a mapping from all natural numbers to real numbers.
 - There are infinite number of entries in a sequence
 - May not have an explicit function to describe the mapping

Example

Example 12.1 Some examples of a sequence of real numbers are:

- {1,2,3,4,...}

- \bullet {-1, 1, -1, 1, -1, ...}
- {3.1, 3.14, 3.141, 3.1415, . . .}
- {1, 4, 1, 5, 9, ...}

Limit of Sequences

Limit of a sequence

 Intuitive Definition: a number to which the entries of the sequences approach arbitrarily close. (How to define arbitrarily ?)

Limit of Sequences

Limit of a sequence

- Mathematical Definition: for any $\{x_n\}$, r is the limit of this sequence if for any small $\varepsilon > 0$, $\exists N$, s.t. for **all** $n \ge N$, $|x_n r| < \varepsilon$.
- $|x_n r| < \varepsilon \iff x_n \in I_{\varepsilon}(r)$
- $l_{\varepsilon}(r) = \{ s \in R : |s r| < \varepsilon \}$

Limit of Sequences

Limit of a sequence

- Mathematical Definition: for any $\{x_n\}$, r is the limit of this sequence if for any small $\varepsilon > 0$, $\exists N$, s.t. for **all** $n \ge N$, $|x_n r| < \varepsilon$.
- $|x_n r| < \varepsilon \iff x_n \in I_{\varepsilon}(r)$
- $I_{\varepsilon}(r) = \{ s \in R : |s r| < \varepsilon \}$

Limit of Sequences: Example

Example 12.2 Here are three more sequences which converge to 0:

$$1, 0, \frac{1}{2}, 0, \frac{1}{3}, 0, \dots$$

$$1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \dots$$

$$\frac{1}{1}, \frac{3}{1}, \frac{1}{2}, \frac{3}{2}, \frac{1}{3}, \frac{3}{3}, \frac{1}{4}, \dots$$

Accumulation Point: if for any positive ε , there are infinitely elements in $I_{\varepsilon}(r)$

- different with the limit
- only need infinitely elements not all x_n (n ≥ N)

Accumulation Point: if for any positive ε , there are infinitely elements in $I_{\varepsilon}(r)$

- different with the limit
- only need infinitely elements not all x_n (n ≥ N)

Accumulation Point: if for any positive ε , there are infinitely elements in $I_{\varepsilon}(r)$

- different with the limit
- only need infinitely elements not all x_n (n ≥ N)

Properties of Limits

- Theorem 12.1: A sequence can have at most one limit
- Theorem 12.2 If $x_n \to x$ and $y_n \to y$, then $x_n + y_n \to x + y$
- **Theorem 12.3** If $x_n \to x$ and $y_n \to y$, then $x_n \times y_n \to xy$

Properties of Limits

- Theorem 12.1: A sequence can have at most one limit
- **Theorem 12.2** If $x_n \to x$ and $y_n \to y$, then $x_n + y_n \to x + y$
- **Theorem 12.3** If $x_n \to x$ and $y_n \to y$, then $x_n \times y_n \to xy$

Properties of Limits

- Theorem 12.1: A sequence can have at most one limit
- **Theorem 12.2** If $x_n \to x$ and $y_n \to y$, then $x_n + y_n \to x + y$
- **Theorem 12.3** If $x_n \to x$ and $y_n \to y$, then $x_n \times y_n \to xy$

Subsequence: $\{y_j\}$ is a subsequence of $\{x_i\}$ if \exists an infinite increasing set of natural number $\{n_j\}$ s.t. $y_1 = x_{n_1}, y_2 = x_{n_2}, y_3 = x_{n_3}$, for example $\{1, -1, 1, -1, \cdots\}$ has two subsequences: $\{1, 1, \cdots\}$ $\{-1, -1, \cdots\}$ and so on.

- Definition: $\{x_i\}, x_i \in R^m$
- Euclidean metric in R^m:

$$d(x_i, x_j) = ||x_i - x_j|| = \sqrt{(x_{i1} - x_{j1})^2 + \dots + (x_{im} - x_{jm})^2}$$

- Definition: $\{x_i\}, x_i \in R^m$
- Euclidean metric in R^m:

$$d(x_i, x_j) = ||x_i - x_j|| = \sqrt{(x_{i1} - x_{j1})^2 + \cdots + (x_{im} - x_{jm})^2}$$

- ε ball about r: $B_{\varepsilon}(r) \equiv \{x \in R^m : ||x - r|| < \varepsilon\}$
- $\{x_i\}$ is said to converge to the vector: for any $\varepsilon > 0$, \exists N, s.t. for any $n \ge N$, $x_n \in B_{\varepsilon}(x)$

- **Theorem 12.5** $x_n \rightarrow x$ if and only if $x_{in} \rightarrow x_i$ for all $i = 1, 2, \dots, m$.
- Theorem 12.6 $x_n \to x$, $y_n \to y$ and $c_n \to c$ then $c_n x_n + y_n \to cx + y$.

- Theorem 12.5 $x_n \to x$ if and only if $x_{in} \to x_i$ for all $i = 1, 2, \dots, m$.
- Theorem 12.6 $x_n \rightarrow x$, $y_n \rightarrow y$ and $c_n \rightarrow c$ then $c_n x_n + y_n \rightarrow c x + y$.

Accumulation Point: if for any positive ε , there are infinitely elements in $B_{\varepsilon}(r)$

Open Sets

- Open sets: A set S in R^m is open if for each $x \in S$, $\exists \varepsilon > 0$ s.t. $B_{\varepsilon}(x) \subset S$.
- Interior: $S \subseteq R^m$. The union of all open sets **contained** in S is called the interior of S, denoted by *intS*

Open Sets

- Open sets: A set S in R^m is open if for each $x \in S$, $\exists \varepsilon > 0$ s.t. $B_{\varepsilon}(x) \subset S$.
- Interior: $S \subseteq R^m$. The union of all open sets **contained** in S is called the interior of S, denoted by *intS*

Closed sets

- Closed sets: A set S in R^m is closed if whenever $\{x_n\}$ is a convergent sequence completely contained in S, its limit is also contained in S.
- Closure: S ⊆ R^m. The intersection of all closed sets **containing** S is called the closure of S, denoted by *clS*.

Closed sets

- Closed sets: A set S in R^m is closed if whenever $\{x_n\}$ is a convergent sequence completely contained in S, its limit is also contained in S.
- Closure: $S \subseteq R^m$. The intersection of all closed sets **containing** S is called the closure of S, denoted by *clS*.

Compact sets

- Boundary: x is in the boundary of S if every open ball about x contains both points in S and points in S^c.
- Bounded: a set S in R^m is bounded if \exists a number B st $||x|| \le B$ for all $x \in S$.
- Compact sets: A set S in R^m is compact if and only if it is both closed and bounded.

Compact sets

- Boundary: x is in the boundary of S if every open ball about x contains both points in S and points in S^c.
- Bounded: a set S in R^m is bounded if \exists a number B st $||x|| \le B$ for all $x \in S$.
- Compact sets: A set S in R^m is compact if and only if it is both closed and bounded.

Compact sets

- Boundary: x is in the boundary of S if every open ball about x contains both points in S and points in S^c.
- Bounded: a set S in R^m is bounded if \exists a number B st $||x|| \le B$ for all $x \in S$.
- Compact sets: A set S in R^m is compact if and only if it is both closed and bounded.

Open Sets, Closed sets and compact sets

•
$$S = \{x \in R^2 : d(x, 1) \le 2\}$$

•
$$S = \{x \in R^2 : d(x, 1) < 2\}$$

•
$$S = \{x \in R^2 : 1 \le d(x, 1) \le 2\}$$

•
$$S = \{x \in R^2 : 1 < d(x, 1) \le 2\}$$

•
$$S = \{x \in R^2 : 1 < d(x, 1) < 2\}$$

- Theorem 12.7: open balls are open sets
- Theorem 12.8: any union of open sets is open; the finite intersection of open sets is open.

- Theorem 12.7: open balls are open sets
- Theorem 12.8: any union of open sets is open; the finite intersection of open sets is open.

- Theorem 12.9: S is closed if and only if $R^m S$ is open.
- Theorem 12.10: any intersection of closed sets is closed; the finite union of closed sets is closed.

- **Theorem 12.9**: S is closed if and only if $R^m S$ is open.
- Theorem 12.10: any intersection of closed sets is closed; the finite union of closed sets is closed.

- Theorem 12.13: Any sequence contained in the closed and bounded interval [0, 1] has a convergent subsequence
- Theorem 12.14: Let C be a compact subset in Rⁿ and let {x_n} be any sequence in C. Then, {x_n} has a convergent subsequence whose limit lies in C.

- Theorem 12.13: Any sequence contained in the closed and bounded interval [0, 1] has a convergent subsequence
- Theorem 12.14: Let C be a compact subset in Rⁿ and let {x_n} be any sequence in C. Then, {x_n} has a convergent subsequence whose limit lies in C.

- Theorem 12.11: $x \in clS$ if and only if there is x_n in S converging to x.
- Theorem 12.12: boundary = $clS \cap clS^c$

- Theorem 12.11: $x \in clS$ if and only if there is x_n in S converging to x.
- Theorem 12.12: boundary = $clS \cap clS^c$